Acceleration of inverse subspace iteration with Newton’s method
نویسندگان
چکیده
منابع مشابه
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملa new inexact inverse subspace iteration for generalized eigenvalue problems
in this paper, we represent an inexact inverse subspace iteration method for com- puting a few eigenpairs of the generalized eigenvalue problem ax = bx[q. ye and p. zhang, inexact inverse subspace iteration for generalized eigenvalue problems, linear algebra and its application, 434 (2011) 1697-1715 ]. in particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملAn Accelerated Subspace Iteration Method
The analysis of a number of physical phenomena requires the solution of an eigenproblem. It is therefore natural that with the increased use of computational methods operating on discrete representations of physical problems the development of efficient algorithms for the calculation of eigenvalues and eigenvectors has attracted much attention [l]-[8]. In particular, the use of finite element a...
متن کاملThe subspace iteration method – Revisited
The objective in this paper is to present some recent developments regarding the subspace iteration method for the solution of frequencies and mode shapes. The developments pertain to speeding up the basic subspace iteration method by choosing an effective number of iteration vectors and by the use of parallel processing. The subspace iteration method lends itself particularly well to shared an...
متن کاملSplit Bregman Method for Sparse Inverse Covariance Estimation with Matrix Iteration Acceleration
We consider the problem of estimating the inverse covariance matrix by maximizing the likelihood function with a penalty added to encourage the sparsity of the resulting matrix. We propose a new approach based on the split Bregman method to solve the regularized maximum likelihood estimation problem. We show that our method is significantly faster than the widely used graphical lasso method, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2014
ISSN: 0377-0427
DOI: 10.1016/j.cam.2013.06.046